MATH 54 - MOCK MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (10 points, 2 points each)

Label the following statements as \mathbf{T} or \mathbf{F}.
(a) FALSE If $\operatorname{dim}(V)=3$ and \mathbf{u} and \mathbf{v} are two vectors in V, then $\{\mathbf{u}, \mathbf{v}\}$ cannot be linearly independent!
(They could be linearly independent. For example, take $V=$ \mathbb{R}^{3}, and $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$! What is true, however, is that they cannot span V)
(b) TRUE If T is a linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2}, and T is onto, then T is also one-to-one.
(This is the third miracle of Linear Algebra that I've been talking about! If you want to prove it, use the rank-nullity theorem!)
(c) FALSE If A is a $m \times n$ matrix, then $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{n}.
(It's a subspace of \mathbb{R}^{m}. For example, take $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$, which is a 2×3 matrix, then $\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}3 \\ 6\end{array}\right]\right\}$, which is a subspace of \mathbb{R}^{2}. In general, it's always good to write down an example of what A looks like, so that you have an idea
of what's going on!)
(d) FALSE If $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$ is the change-of-coordinates matrix from $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$ to $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right\}$ then $\left.\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\mathbf{c}_{\mathbf{1}}\right]_{\mathcal{B}} \quad\left[\mathbf{c}_{\mathbf{2}}\right]_{\mathcal{B}}\right]$
(It's $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}} \quad\left[\mathbf{b}_{\mathbf{2}}\right]_{\mathcal{C}}\right]$, you always take the old vectors (in \mathcal{B}) and evaluate them with respect to the new and cool basis $\mathcal{C})$
(e) TRUE The Span of any set of vectors is always a vector space.
(see example 10 on page 209 for example)
2. (20 points, 5 points each) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) FALSE The set V of 2×2 matrices such that $\operatorname{det}(A)=0$ is a vector space.

Take $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$ so A and B are in V. But $A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
so $\operatorname{det}(A+B)=1 \neq 0$, so $A+B$ is not in V. Hence V is not closed under addition, and hence is not a vector space.
(b) TRUE A 4×5 matrix A cannot be invertible

Hint: How big is $N u l(A)$?
By the rank-nullity theorem, $\operatorname{dim}(\operatorname{Nul}(A))+\operatorname{rank}(A)=5$. But $\operatorname{Rank}(A)=$ number of pivots, which is at most 4 (since A has 4 rows). Hence $\operatorname{dim}(\operatorname{Nul}(A)) \geq 5-4=1$. So $\operatorname{Nul}(A) \neq$ $\{0\}$, hence A is not invertible.
(c) TRUE If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, the set V of 2×2 matrices B such that $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is a vector space.

Note: By O, I mean $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
First of all, V is a subset of $M_{2 \times 2}$, the vector space of 2×2 matrices.

1) Zero-vector: $A O=O$, so the O-matrix is in V
2) Closed under addition: B and C are in V, then $A B=O$, and $A C=O$, so $A(B+C)=A B+A C=O+O=O$, so $B+C$ is in V
3) Closed under scalar multiplication: If B is in V and c is in $\mathbb{R}, A B=O$, and so $A(c B)=c A B=c(O)=O$, so $c B$ in in V

Hence V is a subspace of $M_{2 \times 2}$ and hence is a vector space.
(d) TRUE The set $\left\{1-2 t+t^{2}, 3-5 t+4 t^{2}, 2 t+3 t^{2}\right\}$ is a basis for P_{2}

First of all, identifying polynomials with a number code, we see that all we need to show is whether:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]\right\} \text { is a basis for } \mathbb{R}^{3}
$$

Linear independence: To show that \mathcal{B} is linearly independent, form the matrix $A=\left[\begin{array}{ccc}1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3\end{array}\right]$. All we need to show is that $A \mathbf{x}=\mathbf{0}$ implies that $\mathbf{x}=\mathbf{0}$, where $\mathbf{x}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. But if you row-reduce A, then you should get:

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & 0 \\
-2 & -5 & 2 & 0 \\
1 & 4 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Which implies that $\mathrm{x}=0$, hence \mathcal{B} is linearly independent.
$\underline{\text { Span: Since } \operatorname{dim}\left(\mathbb{R}^{3}\right)=3 \text {, and } \mathcal{B} \text { is a linearly independent with }}$ $\overline{3}$ vectors, we get that \mathcal{B} spans \mathbb{R}^{3} (this is one of the shortcuts I've been talking about in class).

Therefore \mathcal{B} is a basis for \mathbb{R}^{3}, and hence $\left\{1-2 t+t^{2}, 3-5 t+4 t^{2}, 2 t+3 t^{2}\right\}$ is a basis for P_{2}.
3. (5 points) Find the matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first reflects points in \mathbb{R}^{2} about the line $y=x$ and then rotates them by 180 degrees (π radians) counterclockwise.

We have:

$$
T\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], T\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

Hence the matrix of T is:

$$
A=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

4. (5 points) A 2×2 matrix is called symmetric if $A^{T}=A$. Find a basis for the vector space V of all 2×2 symmetric matrices. Show that the basis you found is in fact a basis!

Hint: What does a general 2×2 symmetric matrix look like?

A general 2×2 symmetric matrix has the form: $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$. Notice that:

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

We claim that:

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \text { is a basis for } V
$$

Span: We just showed that! Any symmetric matrix $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ is a linear combination of $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

Linear Independence: (this part is important) Suppose:

$$
a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Then:

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

And hence $a=0, b=0, c=0$, and hence the set is linearly independent!

Therefore \mathcal{B} is a basis for V (and hence V is 3 -dimensional, but you didn't have to write this).
5. (10 points) For the following matrix A, find a basis for $\operatorname{Nul}(A)$, $\operatorname{Row}(A), \operatorname{Col}(A)$, and find $\operatorname{Rank}(A)$:

$$
A=\left[\begin{array}{ccccc}
3 & -1 & 7 & 3 & 9 \\
-2 & 2 & -2 & 7 & 6 \\
-5 & 9 & 3 & 3 & 4 \\
-2 & 6 & 6 & 3 & 7
\end{array}\right] \sim\left[\begin{array}{ccccc}
3 & -1 & 7 & 3 & 9 \\
0 & 2 & 4 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\underline{\operatorname{Nul}(A)}$ Since the right-hand-side is not in reduced row-echelon form, let's further row-reduce it:

$$
\left[\begin{array}{ccccc}
3 & -1 & 7 & 3 & 9 \\
0 & 2 & 4 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
3 & -1 & 7 & 0 & 6 \\
0 & 2 & 4 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
3 & 0 & 9 & 0 & \frac{15}{2} \\
0 & 2 & 4 & 0 & 3 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(I first subtracted 3 times the third row from the first row, and then added $\frac{1}{2}$ times the second row to the first row)

Now if $A \mathbf{x}=\mathbf{0}$, where $\mathbf{x}=\left[\begin{array}{c}x \\ y \\ z \\ t \\ s\end{array}\right]$, then we get:

$$
\left\{\begin{array}{c}
3 x+9 z+\frac{15}{2} s=0 \\
2 y+4 z+3 s=0 \\
t+s=0
\end{array}\right.
$$

That is:

$$
\left\{\begin{array}{c}
x=-3 z-\frac{5}{2} s \\
y=-2 z-\frac{3}{2} s \\
t=-s
\end{array}\right.
$$

Hence we get:

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-3 z-\frac{5}{2} s \\
-2 z-\frac{3}{2} s \\
z \\
-s \\
s
\end{array}\right]=z\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2} \\
0 \\
-1 \\
1
\end{array}\right]
$$

And therefore:

$$
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2} \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

$\operatorname{Row}(A)$ Notice that there are pivots in the first, second, and third row, hence:

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
3 \\
-1 \\
7 \\
0 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
4 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$\operatorname{Col}(A)$ Notice that there are pivots in the first, second, and fourth columns, hence:

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
3 \\
-2 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
9 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
7 \\
3 \\
3
\end{array}\right]\right\}
$$

(Notice that you had to go back to the matrix A to find a basis for $\operatorname{Col}(A)$)
$\operatorname{Rank}(A)$ There are 3 pivots, hence $\operatorname{Rank}(A)=3$.
6. (10 points) Let $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 8\end{array}\right],\left[\begin{array}{c}1 \\ -5\end{array}\right]\right\}$, and $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ be bases for \mathbb{R}^{2}.
(a) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}, namely: $\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}$

$$
[\mathcal{C} \mid \mathcal{B}]=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
4 & 1 & 8 & -5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & -3 & 12 & -9
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 1 & -1 & 1 \\
0 & 1 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -4 & 3
\end{array}\right]
$$

(first I added -4 times the second row to the first, then I divided row 2 by -3 , then I substracted the second row from the first row)

Hence:

$$
\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right]
$$

(b) Calculate $[\mathbf{x}]_{\mathcal{C}}$ given $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.

We have:

$$
[\mathbf{x}]_{\mathcal{C}}=\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

7. (10 points) Let $V=\operatorname{Span}\left\{e^{x}, e^{x} \cos (x), e^{x} \sin (x)\right\}$, and define T :
$V \rightarrow V$ by:

$$
T(y)=y^{\prime}+y
$$

(a) Show T is linear

$$
T\left(y_{1}+y_{2}\right)=\left(y_{1}+y_{2}\right)^{\prime}+\left(y_{1}+y_{2}\right)=\left(y_{1}\right)^{\prime}+\left(y_{2}\right)^{\prime}+y_{1}+y_{2}=\left(y_{1}\right)^{\prime}+y_{1}+\left(y_{2}\right)^{\prime}+y_{2}=T\left(y_{1}\right)+T\left(y_{2}\right)
$$

$T(c y)=(c y)^{\prime}+c y=c y^{\prime}+c y=c\left(y^{\prime}+y\right)=c T(y)$

Hence T is a linear transformation.
(b) Find the matrix of T with respect to the basis $\mathcal{B}=\left\{e^{x}, e^{x} \cos (x), e^{x} \sin (x)\right\}$ for V.

Again, don't freak out! For every vector/function in \mathcal{B}, evaluate T of that function, and express your answer as a linear combination of the functions in \mathcal{B}.

$$
\begin{aligned}
T\left(e^{x}\right) & =\left(e^{x}\right)^{\prime}+e^{x} \\
& =e^{x}+e^{x} \\
& =2 e^{x} \\
& =\mathbf{2} e^{x}+\mathbf{0} e^{x} \cos (x)+\mathbf{0} e^{x} \sin (x) \\
T\left(e^{x} \cos (x)\right) & =\left(e^{x} \cos (x)\right)^{\prime}+e^{x} \cos (x) \\
& =e^{x} \cos (x)-e^{x} \sin (x)+e^{x} \cos (x) \\
& =2 e^{x} \cos (x)-e^{x} \sin (x) \\
& =\mathbf{0} e^{x}+\mathbf{2} e^{x} \cos (x)+(-\mathbf{1}) e^{x} \sin (x) \\
T\left(e^{x} \sin (x)\right) & =\left(e^{x} \sin (x)\right)^{\prime}+e^{x} \sin (x) \\
& =e^{x} \sin (x)+e^{x} \cos (x)+e^{x} \sin (x) \\
& =e^{x} \cos (x)+2 e^{x} \sin (x) \\
& =\mathbf{0} e^{x}+\mathbf{1} e^{x} \cos (x)+\mathbf{2} e^{x} \sin (x)
\end{aligned}
$$

Hence the matrix of T is (just put the numbers in bold together in columns):

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right]
$$

8. (5 points) Find the largest interval (a, b) on which the following differential equation has a unique solution:

$$
\sin (x) y^{\prime \prime}+(\sqrt{2-x}) y^{\prime}=e^{x}
$$

with

$$
y\left(\frac{\pi}{2}\right)=4, y^{\prime}\left(\frac{\pi}{2}\right)=0
$$

First convert the equation in standard form:

$$
y^{\prime \prime}+\left(\frac{\sqrt{2-x}}{\sin (x)}\right) y^{\prime}=\frac{e^{x}}{\sin (x)}
$$

Now let's look at the domain of each term:
The domain of $\frac{\sqrt{2-x}}{\sin (x)}$ is $(-\infty, 2] \cap\{x \neq n \pi\}$ (Basically $(-\infty, 2]$ without multiples of π, \cap means 'intersection'). The part of that domain which contains the initial condition $\frac{\pi}{2}$ is $(0,2]$

The domain of $\frac{e^{x}}{\sin (x)}$ is $\{x \neq n \pi\}$ (anything except multiples of $\pi)$. The part of that domain which contains the initial condition $\frac{\pi}{2}$ is $(0, \pi)$

And if you intersect the two domains you found you get that the answer is $(0,2)$.

Note: Make sure your answer is always an open interval! For example, here we got $(0,2]$, but since it is not an open interval, we chose $(0,2)$.
9. (10 points) Solve the following differential equation:

$$
y^{\prime \prime \prime}-12 y^{\prime \prime}+41 y^{\prime}-42 y=0
$$

Hint: $42=2 \times 3 \times 7$.

The auxiliary equation is $r^{3}-12 r^{2}+41 r-42=0$.
Now, by the rational roots theorem, we know that if the above polynomial has a rational root, then $r=\frac{a}{b}$, where a divides the constant term -42 and b divides the leading term 1.

The only integers which divide -42 are (by the hint): $\pm 1, \pm 2, \pm 3, \pm 7, \pm 6, \pm 14, \pm 21, \pm 42$.
And the only integers which divide 1 are ± 1. Hence our guesses are: $\pm 1, \pm 2, \pm 3, \pm 7, \pm 6, \pm 14, \pm 21, \pm 42$.

If you plug-and-chug, you eventuall figure out that $r=2$ works, i.e. $r=2$ is a root of the auxiliary polynomial.

Now all you have to do is use long division and divide $r^{3}-12 r^{2}+$ $41 r-42$ by $r-2$:

$$
X-2) \begin{array}{r}
X^{2}-10 X+21 \\
\begin{array}{r}
X^{3}-12 X^{2}+41 X-42 \\
-X^{3}+2 X^{2} \\
-10 X^{2}
\end{array}+41 X \\
\frac{10 X^{2}-20 X}{21 X}-42 \\
\frac{-21 X+42}{0}
\end{array}
$$

In other words, $r^{3}-12 r^{2}+41 r-42=\left(r^{2}-10 r+21\right)(r-2)=$ $(r-3)(r-7)(r-2)=(r-2)(r-3)(r-7)$

It follows that the roots are: $r=2,3,7$, which means that the general solution is:

$$
y(t)=A e^{2 t}+B e^{3 t}+C e^{7 t}
$$

NOTE: There are NO shortcuts to this problem! In particular, if you don't show the long division step on the exam, you will lose points!!!
10. (10 points)
(a) Solve $y^{\prime \prime}+4 y^{\prime}+4 y=e^{3 t}$ using undetermined coefficients

Homogeneous solution: $r^{2}+4 r+4=(r+2)^{2}=0$, which gives $r=-2$, a double root, hence $y_{0}(t)=A e^{-2 t}+B t e^{-2 t}$.

Particular solution: Try $y_{p}=A e^{3 t}$. If you plug this into the differential equation, you get:

$$
9 A e^{3 t}+12 A e^{3 t}+4 A e^{3 t}=e^{3 t} \Rightarrow 25 A=1 \Rightarrow A=\frac{1}{25}
$$

So a particular solution is: $y_{p}(t)=\frac{1}{25} e^{3 t}$
General solution:

$$
y(t)=y_{0}(t)+y_{p}(t)=A e^{-2 t}+B t e^{-2 t}+\frac{1}{25} e^{3 t}
$$

(b) Solve $y^{\prime \prime}+y=\tan (t)$ using variation of parameters

Note: You may need to use the fact that $\tan (t)=\frac{\sin (t)}{\cos (t)}$. Also you may use the fact that $\int \frac{\sin ^{2}(t)}{\cos (t)} d t=\ln \left|\frac{\cos (t)}{\sin (t)-1}\right|-\sin (t)$.

Homogeneous solution: $r^{2}+1=0$, so $r= \pm i$, so $y_{0}(t)=$ $A \cos (t)+B \sin (t)$

Particular solution: The Wronskian matrix is $\widetilde{W}(t)=\left[\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$.
Now $y_{p}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$, where v_{1} and v_{2} solve:

$$
\widetilde{W}(t)\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\tan (t)
\end{array}\right]
$$

That is:

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=(\widetilde{W}(t))^{-1}\left[\begin{array}{c}
0 \\
\tan (t)
\end{array}\right]
$$

But:

$$
(\widetilde{W}(t))^{-1}=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
$$

Hence:

$$
\left[\begin{array}{c}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{c}
0 \\
\tan (t)
\end{array}\right]
$$

Therefore:

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
-\sin (t) \tan (t) \\
\cos (t) \tan (t)
\end{array}\right]
$$

That is:

$$
v_{1}^{\prime}(t)=-\sin (t) \tan (t)=-\sin (t)\left(\frac{\sin (t)}{\cos (t)}\right)=\frac{-\sin ^{2}(t)}{\cos (t)}
$$

So:

$$
v_{1}(t)=-\int \frac{\sin ^{2}(t)}{\cos (t)}=-\ln \left|\frac{\cos (t)}{\sin (t)-1}\right|+\sin (t)
$$

(by the Hint, and ignore the constant)
And

$$
v_{2}^{\prime}(t)=\cos (t) \tan (t)=\cos (t)\left(\frac{\sin (t)}{\cos (t)}\right)=\sin (t)
$$

So:

$$
v_{2}(t)=-\cos (t)
$$

Therefore:

$$
\begin{aligned}
y_{p}(t) & =v_{1}(t) \cos (t)+v_{2}(t) \sin (t) \\
& =\left(-\ln \left|\frac{\cos (t)}{\sin (t)-1}\right|+\sin (t)\right) \cos (t)-\cos (t) \sin (t) \\
& =-\ln \left|\frac{\cos (t)}{\sin (t)-1}\right| \cos (t)
\end{aligned}
$$

General solution:

$$
y(t)=y_{0}(t)+y_{p}(t)=A \cos (t)+B \sin (t)-\ln \left|\frac{\cos (t)}{\sin (t)-1}\right| \cos (t)
$$

11. (5 points) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly dependent vectors (in V) and $T: V \rightarrow W$ is a linear transformation. Show that $T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{w})$ are also linearly dependent.

Hint: Write down what it means for 3 vectors to be linearly dependent!

We know that for a, b, c not all 0 :

$$
a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}
$$

Now apply T to this equation:

$$
T(a \mathbf{u}+b \mathbf{v}+c \mathbf{w})=T(\mathbf{0})=\mathbf{0}
$$

But since T is linear, we have:

$$
a T(\mathbf{u})+b T(\mathbf{v})+c T(\mathbf{w})=\mathbf{0}
$$

But since a, b, c are not all 0 , this also means that the vectors $T(\mathbf{u}), T(\mathbf{v}), T(\mathbf{w})$ are linearly dependent! And we're done!

